Evaluate Post-Covid-19 Syndrome from A Biological Perspective

Authors

  • Neha V Lingayas Institute of Health Sciences Nursing Faridabad, Haryana

DOI:

https://doi.org/10.55938/ijhcn.v1i1.25

Keywords:

COVID-19, SARS-CoV-2, Symptoms, Post-COVID-19, Pathophysiology

Abstract

Post-coronavirus illness 2019 (post-COVID-19) syndrome has been identified in a number of patients who initially experienced symptoms during the initial stages of the 2019 coronavirus disease pandemic. Since SARS-CoV-2 is a respiratory coronavirus that induces COVID-19, lung damage is a common complication; however, many other cells & organs are typically harmed as well, resulting in a wide range of symptoms. Patients with mild to severe COVID-19 experience these long-lasting symptoms, however there is little published research on the possible pathophysiological reasons behind this disease. This comprehensive study aims to sum up & assess the biological evidence surrounding post-COVID-19 syndrome. The research reviewed up to August 30, 2021 was included in an integrated review using the methods developed by Whittemore & Knafl.

Metrics

Metrics Loading ...

References

Amenta, E. M., Spallone, A., Rodriguez-Barradas, M. C., El Sahly, H. M., Atmar, R. L., Kulkarni, P. A. (2020). Postacute COVID-19: An overview and approach to classification. Open Forum Infectious Diseases, 7, ofaa509. 10.1093/ofid/ofaa509 DOI: https://doi.org/10.1093/ofid/ofaa509

Astuti, I., Ysrafil (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14, 407–412. 10.1016/j.dsx.2020.04.020 DOI: https://doi.org/10.1016/j.dsx.2020.04.020

Bolourani, S., Brenner, M., Wang, P. (2021). The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. Journal of Molecular Medicine, 99, 1373–1384. 10.1007/s00109-021- 02113-y DOI: https://doi.org/10.1007/s00109-021-02113-y

Carfi, A., Bernabei, R., Landi, F. (2020). Persistent symptoms in patients after acute COVID-19. JAMA, 324, 603–605. 10.1001/jama. 2020.12603 DOI: https://doi.org/10.1001/jama.2020.12603

Centers for Disease Control and Prevention. (2021). Post-COVID conditions: Information for healthcare providers. https://www.cdc. gov/coronavirus/2019-ncov/hcp/clinical-care/post-covidconditions.html

Chandrashekara, S., Jaladhar, P., Paramshetti, S., Ramachandran, V., Nizar, S. F., Kori, D. (2020). Post COVID inflammation syndrome: Different manifestations caused by the virus. Journal of the Association of Physicians of India, 68, 33–34.

Chen YT, Shao SC, Hsu CK, Wu IW, Hung MJ, Chen YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. (2020) 24:346. doi: 10.1186/s13054-020-03009-y DOI: https://doi.org/10.1186/s13054-020-03009-y

Chen, Y., Liu, Q., Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92, 418–423. 10.1002/jmv.25681 DOI: https://doi.org/10.1002/jmv.25681

Chopra, V., Flanders, S. A., O’Malley, M., Malani, A. N., Prescott, H. C. (2021). Sixty-day outcomes among patients hospitalized with COVID-19. Annals of Internal Medicine, 174, 576–578. 10.7326/M20-5661 DOI: https://doi.org/10.7326/M20-5661

Correia AO, Feitosa PWG, Moreira JLS, Nogueira SÁR, Fonseca RB, Nobre MEP. Neurological manifestations of COVID-19 and other coronaviruses: a systematic review. Neurol Psychiatry Brain Res. (2020) 37:27–32. doi: 10.1016/j.npbr.2020.05.008 DOI: https://doi.org/10.1016/j.npbr.2020.05.008

COVID Symptom Study. How Long Does COVID-19 Last? Available online at: https://covid19.joinzoe.com/post/covid-long-term?fbclid= IwAR1RxIcmmdL-EFjh_aI- (accessed December 17, 2020).

Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., Nakao, C., Rayaprolu, V., (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 371, eabf4063. 10.1126/science.abf4063 DOI: https://doi.org/10.1126/science.abf4063

Derouiche, S. (2020). Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease—A systematic review. Journal of Infectious Diseases and Epidemiology, 6. 10.23937/2474-3658/1510121 DOI: https://doi.org/10.23937/2474-3658/1510121

Eze, B., Starkweather, A. (2021). COVID-19 pain and comorbid symptoms. Topics in Pain Management, 36, 1–7. 10.1097/01.TPM. 0000753136.60432.2f DOI: https://doi.org/10.1097/01.TPM.0000753136.60432.2f

Gedefaw, L., Ullah, S., Leung, P. H. M., Cai, Y., Yip, S.-P., Huang, C.-L. (2021). Inflammasome activation-induced hypercoagulopathy: Impact on cardiovascular dysfunction triggered in COVID-19 patients. Cell, 10, 916. 10.3390/cells10040916 DOI: https://doi.org/10.3390/cells10040916

Greenhalgh, T., Knight, M., A’Court, C., Buxton, M., Husain, L. (2020). Management of post-acute covid-19 in primary care. BMJ, 370, m3026. 10.1136/bmj.m3026 DOI: https://doi.org/10.1136/bmj.m3026

Guo, H., Callaway, J. B., Ting, J. P.-Y. (2015). Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature Medicine, 21, 677–687. 10.1038/nm.3893 DOI: https://doi.org/10.1038/nm.3893

Hawker, S., Payne, S., Kerr, C., Hardey, M., Powell, J. (2002). Appraising the evidence: Reviewing disparate data systematically. Qualitative Health Research, 12, 1284–1299. 10.1177/1049732302238251 DOI: https://doi.org/10.1177/1049732302238251

Hui DS, Joynt GM, Wong KT, Gomersall CD, Li TS, Antonio G, et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax. (2005) 60:401–9. doi: 10.1136/thx.2004.030205 DOI: https://doi.org/10.1136/thx.2004.030205

Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, et al. The 1- year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. (2005) 128:2247–61. doi: 10.1378/chest.128.4.2247 DOI: https://doi.org/10.1378/chest.128.4.2247

Kaundal, R. K., Kalvala, A. K., Kumar, A. (2021). Neurological implications of COVID-19: Role of redox imbalance and mitochondrial dysfunction. Molecular Neurobiology, 58, 4575–4587. 10.1007/ s12035-021-02412-y DOI: https://doi.org/10.1007/s12035-021-02412-y

Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. (2020) 7:438–40. doi: 10.1016/S2352-3026(20)30145-9 DOI: https://doi.org/10.1016/S2352-3026(20)30145-9

Levison, M. E. (2020). Commentary: What we know so far about postCOVID syndrome. Merck Manual Consumer Version. https:// www.merckmanuals.com/home/news/editorial/2020/09/24/19/ 01/post-covid-syndrome

Liu, X., Zhang, R., He, G. (2020). Hematological findings in coronavirus disease 2019: Indications of progression of disease. Annals of Hematology, 99, 1421–1428. 10.1007/s00277-020-04103-5 DOI: https://doi.org/10.1007/s00277-020-04103-5

Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. (2020) 38:1504–7. doi: 10.1016/j.ajem.2020.04.048 DOI: https://doi.org/10.1016/j.ajem.2020.04.048

Mallakpour, S., Azadi, E., Hussain, C. M. (2021). Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules. Science of the Total Environment, 776, 145989. 10.1016/j.scitotenv.2021.145989 DOI: https://doi.org/10.1016/j.scitotenv.2021.145989

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. (2020) 77:1–9. doi: 10.1001/jamaneurol.2020.1127 DOI: https://doi.org/10.1001/jamaneurol.2020.1127

Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. (2020) 5:667–78. doi: 10.1016/S2468-1253(20)30126-6 DOI: https://doi.org/10.1016/S2468-1253(20)30126-6

Matsuishi, Y., Mathis, B. J., Shimojo, N., Subrina, J., Okubo, N., Inoue, Y. (2021). Severe COVID-19 infection associated with endothelial dysfunction induces multiple organ dysfunction: A review of therapeutic interventions. Biomedicine, 9, 279. 10.3390/ biomedicines9030279 DOI: https://doi.org/10.3390/biomedicines9030279

Misra, D. P., Agarwal, V., Gasparyan, A. Y., Zimba, O. (2020). Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clinical Rheumatology, 39, 2055–2062. 10.1007/s10067-020-05073-9 DOI: https://doi.org/10.1007/s10067-020-05073-9

Miwa, M., Nakajima, M., Kaszynski, R. H., Hamada, S., Ando, H., Nakano, T., Shirokawa, M., Goto, H. (2021). Abnormal pulmonary function and imaging studies in critical COVID-19 survivors at 100 days after the onset of symptoms. Respiratory Investigation, 59, 614–621. 10.1016/j.resinv.2021.05.005 DOI: https://doi.org/10.1016/j.resinv.2021.05.005

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Prisma Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62, 1006–1012. 10.1016/j.jclinepi.2009.06.005 DOI: https://doi.org/10.1016/j.jclinepi.2009.06.005

Murgolo, N., Therien, A. G., Howell, B., Klein, D., Koeplinger,. (2021). SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathogens, 17, e1009225. 10.1371/journal.ppat.1009225 DOI: https://doi.org/10.1371/journal.ppat.1009225

Ngai JC, Ko FW, Ng SS, To KW, Tong M, Hui DS. The longterm impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. (2010) 15:543–50. doi: 10.1111/j.1440-1843.2010.01720.x DOI: https://doi.org/10.1111/j.1440-1843.2010.01720.x

Park WB, Jun KI, Kim G, Choi JP, Rhee JY, Cheon S, et al. Correlation between pneumonia severity and pulmonary complications in Middle East respiratory syndrome. J Korean Med Sci. (2018) 33:169. doi: 10.3346/jkms.2018.33.e169 DOI: https://doi.org/10.3346/jkms.2018.33.e169

Patterson, B. K., Guevara-Coto, J., Yogendra, R., Francisco, E. B., Long, E., Pise, A., Rodrigues, H., Parikh, P., Mora, J., Mora-Rodríguez, R. A. (2021). Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Frontiers in Immunology, 12, 700782. 10.3389/fimmu.2021.700782 DOI: https://doi.org/10.3389/fimmu.2021.700782

Pavli, A., Theodoridou, M., Maltezou, H. C. (2021). Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Archives of Medical Research, 52, 575–581. 10.1016/j.arcmed.2021.03.010 DOI: https://doi.org/10.1016/j.arcmed.2021.03.010

Ramakrishnan, R. K., Kashour, T., Hamid, Q., Halwani, R., Tleyjeh, I. M. (2021). Unraveling the mystery surrounding post-acute sequelae of COVID-19. Frontiers in Immunology, 12, 686029. 10.3389/fimmu. 2021.686029 DOI: https://doi.org/10.3389/fimmu.2021.686029

Soriano, J. B., Waterer, G., Peñalvo, J. L., Rello, J. (2021). Nefer, Sinuhe and clinical research assessing post COVID-19 condition. European Respiratory Journal, 57, 2004423. 10.1183/13993003.04423-2020 DOI: https://doi.org/10.1183/13993003.04423-2020

Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M., Teixeira, M. M. (2016). Resolution of inflammation: What controls its onset? Frontiers in Immunology, 7, 160. 10.3389/fimmu.2016.00160 DOI: https://doi.org/10.3389/fimmu.2016.00160

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.e6. 10.1016/j.cell.2020.02.058 DOI: https://doi.org/10.1016/j.cell.2020.02.058

West, A. P., Shadel, G. S., Ghosh, S. (2011). Mitochondria in innate immune responses. Nature Reviews Immunology, 11, 389–402. 10. 1038/nri2975 DOI: https://doi.org/10.1038/nri2975

Whiteside, T. L. (2021). Procoagulant activity of extracellular vesicles in plasma of patients with SARS-CoV-2 infection. eBioMedicine, 68, 103411. 10.1016/j.ebiom.2021.103411 DOI: https://doi.org/10.1016/j.ebiom.2021.103411

Whittemore, R. (2005). Combining evidence in nursing research: Methods and implications. Nursing Research, 54, 56–62. 10.1097/00006199- 200501000-00008 DOI: https://doi.org/10.1097/00006199-200501000-00008

Whittemore, R., Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52, 546–553. 10. 1111/j.1365-2648.2005.03621.x DOI: https://doi.org/10.1111/j.1365-2648.2005.03621.x

Le Bon SD , Pisarski N , Verbeke J , et al. Psychophysical evalua- tion of chemosensory functions 5 weeks after olfactory loss due to COVID-19: a prospective cohort study on 72 patients. Eur Arch Otorhinolaryngol 2020;278:101–108 . DOI: https://doi.org/10.1007/s00405-020-06267-2

Moreno-Pérez O, Merino E, Leon-Ramirez JM, et al. COVID19-ALC research Post-acute COVID-19 Syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect 2021 S0163-4453(21)00009-8. doi: 10.1016/j.jinf.2021.01.004. DOI: https://doi.org/10.1016/j.jinf.2021.01.004

Garg P , Arora U , Kumar A , et al. The “post-COVID”syndrome: How deep is the damage? J Med Virol 2021;93:673–674 . DOI: https://doi.org/10.1002/jmv.26465

Liang L, Yang B, Jiang N, et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med. Sci 2020;35:e418. doi: 10.3346/jkms.2020.35.e418 . DOI: https://doi.org/10.3346/jkms.2020.35.e418

Carvalho-Schneider C , Laurent E , Lemaignen A , et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect 2021;27:258–263 DOI: https://doi.org/10.1016/j.cmi.2020.09.052

Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect 2020;81:e4–e6. doi: 10.1016/j.jinf.2020.08.029 . DOI: https://doi.org/10.1016/j.jinf.2020.08.029

Davis HE, Assaf GS, McCorkell L, et al. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. Available at https://www.medrxiv.org/ content/ 10.1101/ 2020. 12.24.20248802v2(Accessed March 15, 2021).

Bellan M, Soddu D, Balbo PE, et al. Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospi- tal Discharge. JAMA Netw Open 2021;4:e2036142 PMID: 33502487. doi: 10.1001/jamanetworkopen.2020.36142. DOI: https://doi.org/10.1001/jamanetworkopen.2020.36142

Soloveva NV, Makarova EV, Kichuk IV. Coronavirus syndrome: COVID-19 psychotrauma. Eur J Transl Myol 2021;30:9302 eCol- lection 2020 Dec 31. doi: 10.4081/ejtm.2020.9302. DOI: https://doi.org/10.4081/ejtm.2020.9302

Chang MC, Park D. Incidence of Post-Traumatic Stress Disorder After Coronavirus Disease. Health care (Basel) 2020;8:373. doi: 10. 3390/health care8040373 . 25. Sher L. Post-COVID syndrome and suicide risk. QJM 2021:hcab007. doi: 10.1093/ qjmed/ hcab007 .

Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun 2020;2:fcaa069 eCollection 2020. doi: 10.1093/ braincomms/ fcaa069 . DOI: https://doi.org/10.1093/braincomms/fcaa069

Raahimi MM, Kane A, Moore CE, et al. Late onset of Guillain- Barre syndrome following SARS-CoV-2 infection: part of ’long COVID-19 syndrome’? BMJ Case Rep 2021;14:e240178. doi: 10. 1136/bcr- 2020- 240178 DOI: https://doi.org/10.1136/bcr-2020-240178

Camdessanche JP, Morel J, Pozzetto B, et al. COVID-19 may induce Guillain-Barrésyndrome. Rev Neurol (Paris) 2020;176:516–518 Epub 2020.PMID: 32334841. doi: 10.1016/j.neurol.2020.04.003 . DOI: https://doi.org/10.1016/j.neurol.2020.04.003

Emamikhah M, Babadi M, Mehrabani M, et al. Opsoclonus- myoclonus syndrome, a post-infectious neurologic complication of COVID-19: case series and review of literature. J Neurovirol 2021:1–9 Online ahead of print. PMID: 33492608. doi: 10.1007/ s13365- 020- 00941- 1 .

Huang C , Huang L , Wang Y , et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021;397:220–232 . DOI: https://doi.org/10.1016/S0140-6736(20)32656-8

Scoppettuolo P, Borrelli S, Naeije G. Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav Immun Health 2020;5:100094. doi: 10.1016/j.bbih.2020.100094. DOI: https://doi.org/10.1016/j.bbih.2020.100094

Shahali H, Ghasemi A, Farahani RH, et al. Acute transverse myelitis after SARS-CoV-2 infection: a rare complicated case of rapid onset paraplegia. J Neurovirol 2021:1–5 Online ahead of print. (Accessed March 15, 2021). doi: 10.1007/s13365- 021- 00957- 1 .

Kilbertus S. Acute transverse myelitis attributed to SARS-CoV-2 in- fection presenting as impaired mobility: a case report. CJEM 2021 1–2Online ahead of print. doi: 10.1007/s43678- 021- 00104- z. DOI: https://doi.org/10.1007/s43678-021-00104-z

Crossref Crossmark

Downloads

Additional Files

Published

2022-09-20

How to Cite

V, N. (2022). Evaluate Post-Covid-19 Syndrome from A Biological Perspective. International Journal Of Health Care And Nursing, 1(1), 25–39. https://doi.org/10.55938/ijhcn.v1i1.25
Published: 2022-09-20