An Overview on Cardio-Protective Compound Dexrazoxane
DOI:
https://doi.org/10.55938/ijhcn.v1i2.44Keywords:
Dexrazoxane, Anthracycline, Cardiotoxicity, Cardiovascular Disease, Chemotherapy, DoxorubicinAbstract
Heart plays a vital role in the human life survival. Now a days the global burden of heart problems is very high. There is very high mortality rate. So in this review we aimed to explore the cardioprotective drug dexrazoxane. Now, dexrazoxane has received approval for two different uses: avoiding tissue damage after anthracycline extravasation and preventing cardiotoxicity during anthracycline-based chemotherapy. Regardless of existing cardiac risk factors, the medication seems to provide cardiac protection. Dexrazoxane is a bisdioxopiperazine with iron-chelating, chemoprotective, cardioprotective, and antineoplastic properties, according to the prior study. So this study suggests that the dexrazoxane will play very important role in the treatment of cardiac problems.
Keywords- Dexrazoxane, Anthracycline, Cardiotoxicity, Cardiovascular Disease, Chemotherapy, Doxorubicin
References
Herman EH, Ferrans VJ. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol. 1998;25(4 Suppl 10):15–21.
Langer SW, Sehested M, Jensen PB. Treatment of anthracycline extravasation with dexrazoxane. Clin Cancer Res. 2000;(9):3680–3686.
Langer SW, Sehested M, Jensen PB. Dexrazoxane is a potent and specific inhibitor of anthracycline induced subcutaneous lesions in mice. Ann Oncol. 2001;12(3):405–410. DOI: https://doi.org/10.1023/A:1011163823321
Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2011) Anthracycline cardiotoxicity: from bench to bedside. NIH Public Access 26(22):3777–3784.
McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75.
Vejpongsa P, Yeh ETH (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64(9):938–945.
Tan TC, Scherrer-Crosbie M (2012) Assessing the cardiac toxicity of chemotherapeutic agents: role of echocardiography. Curr Cardiovasc Imaging Rep 5(6):403–409. DOI: https://doi.org/10.1007/s12410-012-9163-3
Santos DS, Goldenberg RCS (2018) Doxorubicin-induced cardiotoxicity: from mechanisms to development of efficient therapy (Chapter 1). Cardiotoxicity: Intech Open, pp 3–24 DOI: https://doi.org/10.5772/intechopen.79588
Renu K, Abilash VG, Tirupathi Pichiah PB, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy – an update. Eur J Pharmacol 818(October 2017):241–253.
Volkova M, Russell R (2012) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. CurrCardiol Rev 7(4):214–220. DOI: https://doi.org/10.2174/157340311799960645
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124(2):617–630. DOI: https://doi.org/10.1172/JCI72931
Minotti G, Salvatorelli E, Menna P, Ronchi R, Cairo G (2001) Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res 61(23):8422–8428
Nbigil CG, Désaubry L (2018) Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol 9(NOV):1–13. DOI: https://doi.org/10.3389/fphar.2018.01262
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52(6):1213–1225. DOI: https://doi.org/10.1016/j.yjmcc.2012.03.006
Alkuraishy HM, Al-gareeb AI, Al-hussaniy HA (2017) Doxorubicin-induced cardiotoxicity: molecular mechanism and protection by conventional drugs and natural products. Int J Clin Oncol Cancer Res 2(2):31–44.
Licata S, Saponiero A, Mordente A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13(5):414–420. DOI: https://doi.org/10.1021/tx000013q
Mitry MA, Edwards JG (2016) Doxorubicin induced heart failure: phenotype and molecular mechanisms. IJC Heart Vasc 10:17–24. DOI: https://doi.org/10.1016/j.ijcha.2015.11.004
Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G et al (2016) Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 293:44–52. DOI: https://doi.org/10.1016/j.taap.2016.01.006
Langer SW (2014) Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res 6:357–363.
Ganatra S, Nohria A, Shah S, Groarke JD, Sharma A, Venesy D et al (2019) Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardio-Oncology 5(1):1–12. DOI: https://doi.org/10.1186/s40959-019-0036-7
Tebbi C.K., London W.B., Friedman D. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol. 2007;25:493–500. DOI: https://doi.org/10.1200/JCO.2005.02.3879
Chow E.J., Asselin B.L., Schwartz C.L. Late mortality after dexrazoxane treatment: a report from the Children's Oncology Group. J Clin Oncol. 2015;33:2639–2645. DOI: https://doi.org/10.1200/JCO.2014.59.4473
Sun F., Qi X., Geng C., Li X. Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am J Med Sci. 2015;349:406–412. DOI: https://doi.org/10.1097/MAJ.0000000000000432
Swain S.M., Whaley F.S., Gerber M.C. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–1332. DOI: https://doi.org/10.1200/JCO.1997.15.4.1318
Lopez M., Vici P., Di Lauro K. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16:86–92. DOI: https://doi.org/10.1200/JCO.1998.16.1.86
Kim I.H., Lee J.E., Youn H.J., Song B.J., Chae B.J. Cardioprotective effect of dexrazoxane in patients with HER2-positive breast cancer who receive anthracycline based adjuvant chemotherapy followed by Trastuzumab. J Breast Cancer. 2017;20:82–90. DOI: https://doi.org/10.4048/jbc.2017.20.1.82
Tahover E., Segal A., Isacson R. Dexrazoxane added to doxorubicin-based adjuvant chemotherapy of breast cancer: a retrospective cohort study with a comparative analysis of toxicity and survival. Anticancer Drugs. 2017;28:787–794. DOI: https://doi.org/10.1097/CAD.0000000000000514
Binggao W., Xinyan Y., Li W., Hong H., Zhibo X., Zhenfeng L. Protective effect of dexrazoxane on the heart in elderly breast cancer patients after adjuvante chemotherapy. J Modern Oncol. 2016;15:2391–2393.
Bailly, C. (2012). "Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy." Chemical reviews 112(7): 3611-3640. DOI: https://doi.org/10.1021/cr200325f
Bing, S. and D. Li (2016). "硫化氢抑制 p38MAPK 和 NF-κB p65 信号通路活性改善糖尿病心肌纤维化的作用和机制." Jie Fang Jun Yi Xue Za Zhi 41(11): 902.
Blanusa, M., V. M. Varnai, M. Piasek and K. Kostial (2005). "Chelators as antidotes of metal toxicity: therapeutic and experimental aspects." Current medicinal chemistry 12(23): 2771-2794. DOI: https://doi.org/10.2174/092986705774462987
Bloom, M. W., C. E. Hamo, D. Cardinale, B. Ky, A. Nohria, L. Baer, H. Skopicki, D. J. Lenihan, M. Gheorghiade and A. R. Lyon (2016). "Cancer therapy–related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging." Circulation: Heart Failure 9(1): e002661. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002661
Eneh, C. and M. R. Lekkala (2021). Dexrazoxane. StatPearls [Internet], StatPearls Publishing.
Gianni, L., E. H. Herman, S. E. Lipshultz, G. Minotti, N. Sarvazyan and D. B. Sawyer (2008). "Anthracycline cardiotoxicity: from bench to bedside." Journal of clinical oncology: official journal of the American Society of Clinical Oncology 26(22): 3777. DOI: https://doi.org/10.1200/JCO.2007.14.9401
Goodenow, D., F. Emmanuel, C. Berman, M. Sahyouni and C. Richardson (2020). "Bioflavonoids cause DNA double-strand breaks and chromosomal translocations through topoisomerase II-dependent and-independent mechanisms." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 849: 503144. DOI: https://doi.org/10.1016/j.mrgentox.2020.503144
Hellmann, K. and W. Rhomberg (2010). Dexrazoxane. Razoxane and Dexrazoxane-Two Multifunctional Agents, Springer: 157-235. DOI: https://doi.org/10.1007/978-90-481-9168-0_3
Herman, E. H. and V. J. Ferrans (1998). Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Seminars in oncology.
Jirkovská, A., G. Karabanovich, J. Kubes, V. Skalická, I. Melnikova, J. Korabecny, T. Kucera, E. Jirkovsky, L. Novakova and H. Bavlovič Piskáčková (2021). "Structure–Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIβ Interactions." Journal of Medicinal Chemistry 64(7): 3997-4019. DOI: https://doi.org/10.1021/acs.jmedchem.0c02157
Kane, R. C., W. D. McGuinn Jr, R. Dagher, R. Justice and R. Pazdur (2008). "Dexrazoxane (Totect™): FDA review and approval for the treatment of accidental extravasation following intravenous anthracycline chemotherapy." The Oncologist 13(4): 445-450. DOI: https://doi.org/10.1634/theoncologist.2007-0247
Kollárová-Brázdová, P., A. Jirkovská, G. Karabanovich, Z. Pokorná, H. B. Piskáčková, E. Jirkovský, J. Kubeš, O. Lenčová-Popelová, Y. Mazurová and M. Adamcová (2020). "Investigation of structure-activity relationships of dexrazoxane analogs reveals topoisomerase IIβ interaction as a prerequisite for effective protection against anthracycline cardiotoxicity." Journal of Pharmacology and Experimental Therapeutics 373(3): 402-415. DOI: https://doi.org/10.1124/jpet.119.264580
Kreidieh, F. Y., H. A. Moukadem and N. S. El Saghir (2016). "Overview, prevention and management of chemotherapy extravasation." World journal of clinical oncology 7(1): 87. DOI: https://doi.org/10.5306/wjco.v7.i1.87
Kropp, J., E. C. Roti Roti, A. Ringelstetter, H. Khatib, D. H. Abbott and S. M. Salih (2015). "Dexrazoxane diminishes doxorubicin-induced acute ovarian damage and preserves ovarian function and fecundity in mice." PLoS One 10(11): e0142588. DOI: https://doi.org/10.1371/journal.pone.0142588
Langer, S. W. (2014). "Dexrazoxane for the treatment of chemotherapy-related side effects." Cancer management and research 6: 357. DOI: https://doi.org/10.2147/CMAR.S47238
Luks, A. M. and E. R. Swenson (2008). "Medication and dosage considerations in the prophylaxis and treatment of high-altitude illness." Chest 133(3): 744-755. DOI: https://doi.org/10.1378/chest.07-1417
McGowan, J. V., R. Chung, A. Maulik, I. Piotrowska, J. M. Walker and D. M. Yellon (2017). "Anthracycline chemotherapy and cardiotoxicity." Cardiovascular drugs and therapy 31(1): 63-75. DOI: https://doi.org/10.1007/s10557-016-6711-0
OS, D. "ADRIAMYCIN (DOXOrubicin HCl) for Injection, USP ADRIAMYCIN (DOXOrubicin HCl) Injection, USP."
Renu, K., V. Abilash, T. P. PB and S. Arunachalam (2018). "Molecular mechanism of doxorubicin-induced cardiomyopathy–An update." European journal of pharmacology 818: 241-253. DOI: https://doi.org/10.1016/j.ejphar.2017.10.043
Rochette, L., C. Guenancia, A. Gudjoncik, O. Hachet, M. Zeller, Y. Cottin and C. Vergely (2015). "Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms." Trends in pharmacological sciences 36(6): 326-348. DOI: https://doi.org/10.1016/j.tips.2015.03.005
Shin, J., M.-H. Song, J.-W. Oh, Y.-S. Keum and R. K. Saini (2020). "Pro-oxidant actions of carotenoids in triggering apoptosis of cancer cells: A review of emerging evidence." Antioxidants 9(6): 532. DOI: https://doi.org/10.3390/antiox9060532
Štěrba, M., O. Popelová, A. Vávrová, E. Jirkovský, P. Kovaříková, V. Geršl and T. Šimůnek (2013). "Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection." Antioxidants & redox signaling 18(8): 899-929. DOI: https://doi.org/10.1089/ars.2012.4795
Tacar, O., P. Sriamornsak and C. R. Dass (2013). "Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems." Journal of pharmacy and pharmacology 65(2): 157-170. DOI: https://doi.org/10.1111/j.2042-7158.2012.01567.x
Vejpongsa, P. and E. T. Yeh (2014). "Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities." Journal of the American College of Cardiology 64(9): 938-945. DOI: https://doi.org/10.1016/j.jacc.2014.06.1167
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Akshoo Rathi; Yogender Bahugana; Mohit Nagar
This work is licensed under a Creative Commons Attribution 4.0 International License.