Monitoring of Soil Health in Digital Age

Authors

DOI:

https://doi.org/10.55938/wlp.v1i2.117

Keywords:

NPK, Soil Health Monitoring, Smart Environmental Monitoring, Soil Nutrient, Sensing Technologies

Abstract

The health of society and humans depend on the soil, and human activity has an influence on the lifespan of the soil ecosystem. By taking social and cultural factors into account, a well-being perspective can enhance knowledge of soil health, match with societal objectives, and enrich policy frameworks. This paper presents an all-encompassing system for tracking environmental data economically that integrates sensing, networking, and visualization layers. With the integration of Internet of Things (IoT) systems, it makes possible strong statistical and mathematical models, which are essential for public health and sustainable smart city development. To provide farmers reliable information, the decision support system utilizes sensors, cloud computing, artificial intelligence (AI), and machine learning. In order to maximize output and reduce fertilizer usage, it employs an IoT-enabled algorithm to categorize soil nutrients and recommend crops. Automation is employed for data storage, processing, and collecting. Through encouraging cooperation, supporting data-driven decision-making, testing sensors, and educating users through cutting-edge visualization tools, the digital twin supports a variety of stakeholders, including farmers, agronomists, soil researchers, and law makers. Through integrating data and predictive models, it addresses climate change concerns and promotes soil research. Utilizing organic farming practices, beneficial fungus, and conservation tillage techniques to improve plant resistance, nutrient availability, and water usage efficiency are all components of agricultural sustainability. A fuzzy classifier categorizes real-time data from NPK sensors into sodium, potassium, and calcium parameters, enabling farmers to monitor soil health and track plant growth, enhancing productivity and minimizing resource wastage through an IoT-enabled fuzzy system. The study investigates the utilization of unmanned aerial vehicles, aerial imaging, and geographic information systems (GIS) for effective plant detection and enumeration in response to growing demand for food.

References

1. Postolache, S., Sebastião, P., Viegas, V., Postolache, O., &Cercas, F. (2022). IoT-based systems for soil nutrients assessment in horticulture. Sensors, 23(1), 403.

2. Fan, Y., Wang, X., Funk, T., Rashid, I., Herman, B., Bompoti, N., ... & Li, B. (2022). A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives. Environmental Science & Technology, 56(19), 13546-13564.

3. Simo, A., Dzitac, S., Duțu, A., &Pandelica, I. (2023). Smart Agriculture in the Digital Age: A Comprehensive IoT-Driven Greenhouse Monitoring System. International Journal of Computers Communications & Control, 18(6).

4. Pallavi, C. V., & Usha, S. (2022, November). IoT Based Site Specific Nutrient Management System for Soil Health Monitoring. In 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS) (pp. 166-170). IEEE.

5. Pechlivani, E. M., Papadimitriou, A., Pemas, S., Ntinas, G., &Tzovaras, D. (2023). IoT-Based Agro-Toolbox for Soil Analysis and Environmental Monitoring. Micromachines, 14(9), 1698.

6. Pamula, A. S., Ravilla, A., & Madiraju, S. V. H. (2022). Applications of the Internet of Things (IoT) in Real-Time Monitoring of Contaminants in the Air, Water, and Soil. Engineering Proceedings, 27(1), 26.

7. Mahangare, A., Kumar, J., Simon, R., Mallick, S., Jagtap, A., & Yeolekar, R. (2022). Soil Health Monitoring System using Random Forest Algorithm. International Journal of Research in Engineering, Science and Management, 5(6), 141-143.

8. Prasad, R., Tiwari, R., & Srivastava, A. K. (2023). IoT-Based Fuzzy Logic Controller for Smart Soil Health Monitoring: A Case Study of Semi-Arid Region of India. In Presented at the 10th International Electronic Conference on Sensors and Applications (ECSA-10) (Vol. 15, p. 30).

9. Ramson, S. J., León-Salas, W. D., Brecheisen, Z., Foster, E. J., Johnston, C. T., Schulze, D. G., ... & Malaga, M. P. (2021). A self-powered, real-time, LoRaWAN IoT-based soil health monitoring system. IEEE Internet of Things Journal, 8(11), 9278-9293.

10. Gopalakrishnan, S., Waimin, J., Zareei, A., Sedaghat, S., Raghunathan, N., Shakouri, A., & Rahimi, R. (2022). A biodegradable chipless sensor for wireless subsoil health monitoring. Scientific reports, 12(1), 8011.

11. Hassan, S. I., Alam, M. M., Zia, M. Y. I., Rashid, M., Illahi, U., &Su’ud, M. M. (2022). Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors, 22(21), 8567.

12. Kamble, S., Gottiparthi, P., Thool, A., Ghadge, P., &Mhaiske, P. (2018). Automatic Soil Detection Using Sensors.

13. Hossen, M. H., Hasan, M. M., Sajidul, I. K., & Hu, W. (2022, January). Digital Revolution in the Agriculture Based on Data Science. In 2022 2nd Asia Conference on Information Engineering (ACIE) (pp. 6-12). IEEE.

14. Senapaty, M. K., Ray, A., &Padhy, N. (2023). IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture. Computers, 12(3), 61.

15. Doshi, J., Patel, T., & kumar Bharti, S. (2019). Smart Farming using IoT, a solution for optimally monitoring farming conditions. Procedia Computer Science, 160, 746-751.

16. Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113.

17. Madeira, R. N., Santos, P. A., Java, O., Priebe, T., Graça, E., Sárközi, E., ... & Gómez, R. P. B. (2022). Towards Digital Twins for Multi-Sensor Land and Plant Monitoring. Procedia Computer Science, 210, 45-52.

18. Tsakiridis, N. L., Samarinas, N., Kalopesa, E., &Zalidis, G. C. (2023). Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Systems, 7(4), 88.

19. Singh, G., & Purohit, V. M. (2017). PORTABLE LOW COST SOIL HEALTH-MONITORING SYSTEM. International Journal of Technical Research and Applications, 5(3), 125-128.

20. Silvero, N. E., Demattê, J. A., Minasny, B., Rosin, N. A., Nascimento, J. G., Albarracín, H. S. R., ... & Gómez, A. M. (2023). Sensing technologies for characterizing and monitoring soil functions: A review. Advances in Agronomy, 177, 125-168.

21. Cojocaru, C., Ene, A., & Gojgar, A. F. (2020). Farm’s soil quality using wireless Npk sensor. no. November, 3-7.

22. Prasad, R., Tiwari, R., & Srivastava, A. K. (2023). Internet of Things-Based Fuzzy Logic Controller for Smart Soil Health Monitoring: A Case Study of Semi-Arid Regions of India. Engineering Proceedings, 58(1), 85.

23. Xue, J., Zhang, X., Chen, S., Lu, R., Wang, Z., Wang, N., ... & Shi, Z. (2023). The validity domain of sensor fusion in sensing soil quality indicators. Geoderma, 438, 116657.

24. Silvero, N. E., Demattê, J. A., Minasny, B., Rosin, N. A., Nascimento, J. G., Albarracín, H. S. R., ... & Gómez, A. M. (2023). Sensing technologies for characterizing and monitoring soil functions: A review. Advances in Agronomy, 177, 125-168.

25. Nadporozhskaya, M., Kovsh, N., Paolesse, R., &Lvova, L. (2022). Recent advances in chemical sensors for soil analysis: a review. Chemosensors, 10(1), 35.

26. Fahey, T., Pham, H., Gardi, A., Sabatini, R., Stefanelli, D., Goodwin, I., & Lamb, D. W. (2020). Active and passive electro-optical sensors for health assessment in food crops. Sensors, 21(1), 171.

27. Eldeeb, M. A., Dhamu, V. N., Paul, A., Muthukumar, S., & Prasad, S. (2023). Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines, 14(7), 1314.

28. Swetha, R. K., Mukhopadhyay, S., & Chakraborty, S. (2020). Advancement in Soil Testing with New Age Sensors: Indian Perspective. Soil analysis: Recent trends and applications, 55-68.

Published

2024-11-21

How to Cite

Thapliyal, S., Bisht, K., & Sharma, M. (2024). Monitoring of Soil Health in Digital Age. Wisdom Leaf Press, 1(2), 85–91. https://doi.org/10.55938/wlp.v1i2.117

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>