Contrasting Synthetic and Real Art: Pioneering AI Learning Advancements

Authors

  • Manika Kaushik Santa Ana Unified School District, Orange County, California, United States

DOI:

https://doi.org/10.55938/ijgasr.v3i4.153

Keywords:

Emotion detection, Synthetic data, Real-world datasets, Comparative study, Machine learning, Performance metrics, Accuracy

Abstract

This paper presents a comparative study between models trained on real-world and synthetic datasets in the domain of artificial intelligence and machine learning. By meticulously evaluating model performance, generalization capabilities, and robustness across diverse scenarios, the investigation of the efficacy and feasibility of synthetic data in machine learning applications. Through empirical analysis, the address fundamental questions regarding predictive accuracy, resilience to adversarial inputs, and biases inherent in synthetic data. Our findings provide valuable insights for practitioners and researchers navigating the dynamic landscape of AI methodologies, offering guidance for informed decision-making and future advancements in the field.

Downloads

Download data is not yet available.

References

L. Yueli, Y. Shaoshi, Z. Guofu, L. Jiangyang and Z. Zhimin, "Ultra wide band synthetic aperture radar real time processing with a subaperture nonlinear chirp scaling algorithm," 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea (South), 2011, pp. 1-4.

K. Borowiec, "Real-time synthetic aperture radar imagery displaying application: Implementation and results," 2015 Signal Processing Symposium (SPSympo), Debe, Poland, 2015, pp. 1-4, doi: 10.1109/SPS.2015.7168264. DOI: https://doi.org/10.1109/SPS.2015.7168264

J. Barowski, I. Rolfes and C. Baer, "Real-time imaging system for millimeter wave synthetic aperture radar sensors," 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), Gothenburg, Sweden, 2017, pp. 1-3, doi: 10.1109/IMBIOC.2017.7965769. DOI: https://doi.org/10.1109/IMBIOC.2017.7965769

F. Fembacher, F. B. Khalid, G. Balazs, D. T. Nugraha and A. Roger, "Real-Time Synthetic Aperture Radar for Automotive Embedded Systems," 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 2018, pp. 517-520, doi: 10.23919/EuRAD.2018.8546620. DOI: https://doi.org/10.23919/EuRAD.2018.8546620

H. Bi, G. Bi, B. Zhang, W. Hong and Y. Wu, "From Theory to Application: Real-Time Sparse SAR Imaging," in IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2928-2936, April 2020, doi: 10.1109/TGRS.2019.2958067. DOI: https://doi.org/10.1109/TGRS.2019.2958067

T. Murata et al., "Distribution of Synthetic Populations of Japan for Social Scientists and Social Simulation Researchers," 2019 International Conference on Machine Learning and Cybernetics (ICMLC), Kobe, Japan, 2019, pp. 1-5, doi: 10.1109/ICMLC48188.2019.8949245. DOI: https://doi.org/10.1109/ICMLC48188.2019.8949245

X. Huang, K. Xu, J. Chen, A. Wang, S. Chen and H. Li, "Real-Time Processing of Ship Detection with SAR Image Based on FPGA," IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 8954-8957, doi: 10.1109/IGARSS53475.2024.10640725. DOI: https://doi.org/10.1109/IGARSS53475.2024.10640725

Y. Huang, Z. Chen, C. Wen, J. Li, X. -G. Xia and W. Hong, "An Efficient Radio Frequency Interference Mitigation Algorithm in Real Synthetic Aperture Radar Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 5224912, doi: 10.1109/TGRS.2022.3155068.

H. Le, M. Nguyen and W. Q. Yan, "Machine Learning with Synthetic Data – a New Way to Learn and Classify the Pictorial Augmented Reality Markers in Real-Time," 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand, 2020, pp. 1-6, doi: 10.1109/IVCNZ51579.2020.9290606. DOI: https://doi.org/10.1109/IVCNZ51579.2020.9290606

G. Adhikari, S. Halder, S. Banerjee and S. S. Chaudhuri, "An Effective Use of Synthetic Aperture Radar Imaging Technique Over Optical Remote Sensing and Real Aperture Radar for Mapping of Earth Surface Features," 2021 Innovations in Energy Management and Renewable Resources(52042), Kolkata, India, 2021, pp. 1-6, doi: 10.1109/IEMRE52042.2021.9386850. DOI: https://doi.org/10.1109/IEMRE52042.2021.9386850

M. Barati, "Faster Than Real-time Prediction of Disruptions in Power Grids using PMU: Gated Recurrent Unit Approach," 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2019, pp. 1-5, doi: 10.1109/ISGT.2019.8791625. DOI: https://doi.org/10.1109/ISGT.2019.8791625

W. Johannes et al., "Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or UAV," SENSORS, 2011 IEEE, Limerick, Ireland, 2011, pp. 2022-2025, doi: 10.1109/ICSENS.2011.6127301. DOI: https://doi.org/10.1109/ICSENS.2011.6127301

T. Di Ianni, T. K. Kjeldsen, C. A. V. Hoyos, J. Mosegaard and J. A. Jensen, "Real-time implementation of synthetic aperture vector flow imaging on a consumer-level tablet," 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 2017, pp. 1-4, doi: 10.1109/ULTSYM.2017.8092359. DOI: https://doi.org/10.1109/ULTSYM.2017.8092359

T. R. Abdelzaher, S. Prabh and R. Kiran, "On real-time capacity limits of multihop wireless sensor networks," 25th IEEE International Real-Time Systems Symposium, Lisbon, Portugal, 2004, pp. 359-370, doi: 10.1109/REAL.2004.37. DOI: https://doi.org/10.1109/REAL.2004.37

Y. Huang, Z. Chen, C. Wen, J. Li, X. -G. Xia and W. Hong, "An Efficient Radio Frequency Interference Mitigation Algorithm in Real Synthetic Aperture Radar Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 5224912, doi: 10.1109/TGRS.2022.3155068. DOI: https://doi.org/10.1109/TGRS.2022.3155068

L. Xu, D. Feng, X. Pan, Q. Liu and X. Wang, "An Improved Digital False-Target Image Synthesizer Method for Countering Inverse Synthetic Aperture Radar," in IEEE Sensors Journal, vol. 15, no. 10, pp. 5870-5877, Oct. 2015, doi: 10.1109/JSEN.2015.2453163. DOI: https://doi.org/10.1109/JSEN.2015.2453163

U. Stein and M. Younis, "Suppression of range ambiguities in synthetic aperture radar systems," The IEEE Region 8 EUROCON 2003. Computer as a Tool., Ljubljana, Slovenia, 2003, pp. 417-421 vol.2, doi: 10.1109/EURCON.2003.1248231. DOI: https://doi.org/10.1109/EURCON.2003.1248231

J. -H. Song, W. -K. Lee and C. H. Jung, "High resolution ISAR processing using real data: ISAR-to-SAR approach," 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015, pp. 536-540, doi: 10.1109/APSAR.2015.7306266. DOI: https://doi.org/10.1109/APSAR.2015.7306266

J. Shang, L. Ma and X. Shang, "Learning to Enhance Low-Light Images with a Synthetic-Real Interaction Training Strategy," 2020 8th International Conference on Digital Home (ICDH), Dalian, China, 2020, pp. 99-103, doi: 10.1109/ICDH51081.2020.00025. DOI: https://doi.org/10.1109/ICDH51081.2020.00025

Linares-Barranco, R. Senhadji-Navarro, I. Garcia-Vargas, F. Gomez-Rodriguez, G. Jimenez and A. Civit, "Synthetic generation of address-events for real-time image processing," EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.03TH8696), Lisbon, Portugal, 2003, pp. 462-467 vol.2, doi: 10.1109/ETFA.2003.1248735. DOI: https://doi.org/10.1109/ETFA.2003.1248735

Published

2025-01-08

How to Cite

Kaushik, M. (2025). Contrasting Synthetic and Real Art: Pioneering AI Learning Advancements. International Journal for Global Academic & Scientific Research, 3(4), 35–50. https://doi.org/10.55938/ijgasr.v3i4.153