Leveraging AI for Accurate Time Series Forecasting

Authors

DOI:

https://doi.org/10.55938/ijgasr.v3i4.154

Keywords:

Machine Learning, Deep Learning, ANN, Time Series, Forecasting

Abstract

This study seeks to develop a robust model for forecasting time series data, with an eye towards complex temporal datasets. Accurate forecasting in time series analysis is a function of past information and constitutes a basis for unsupervised machine learning. With deep learning techniques such as neural networks, this work seeks to provide high accuracy over traditional approaches in time series forecasting. Such complex techniques have a significant impact in overcoming complications in forecasting in areas such as weather trends, consumption of energy, and financial trends in the marketplace. Out of such techniques, Artificial Neural Networks have been seen to outshine alternatives such as Long Short-Term Memory networks in working with complex temporal relationships. In this work, an opportunity for leveraging complex AI techniques towards enhancing accuracy and dependability in forecasting in a time series is focused on.

Downloads

Download data is not yet available.

References

Idrees, S.M.; Alam, M.A.; Agarwal, P. A Prediction Approach for Stock Market Volatility Based on Time Series Data. IEEE Access 2019, 7, 17287–17298 DOI: https://doi.org/10.1109/ACCESS.2019.2895252

Javeri, I.Y.; Toutiaee, M.; Arpinar, I.B.; Miller, J.A.; Miller, T.W. Improving Neural Networks for Time-Series Forecasting using Data Augmentation and AutoML. In Proceedings of the 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, UK, 23–26 August 2021; pp. 1–8. DOI: https://doi.org/10.1109/BigDataService52369.2021.00006

Zhao, R.; Wang, J.; Chen, G.; Li, Q.; Yuan, Y. A Machine Learning Pipeline Generation Approach for Data Analysis. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1488–1493. DOI: https://doi.org/10.1109/ICCC51575.2020.9345123

Ono, J.P.; Castelo, S.; Lopez, R.; Bertini, E.; Freire, J.; Silva, C. PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines. IEEE Trans. Vis. Comput. Graph. 2021, 27, 390–400. DOI: https://doi.org/10.1109/TVCG.2020.3030361

Nguyen, D.A.; Kononova, A.V.; Menzel, S.; Sendhoff, B.; Back, T. An Efficient Contesting Procedure for AutoML Optimization. IEEE Access 2022, 10, 75754–75771. DOI: https://doi.org/10.1109/ACCESS.2022.3192036

Parmentier, L.; Nicol, O.; Jourdan, L.; Kessaci, M.-E. TPOT-SH: A Faster Optimization Algorithm to Solve the AutoML Problem on Large Datasets. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 471–478. DOI: https://doi.org/10.1109/ICTAI.2019.00072

Sarafanov, M.; Pokrovskii, V.; Nikitin, N.O. Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; pp. 01–08. DOI: https://doi.org/10.1109/CEC55065.2022.9870347

Gawalska, A.; Czub, N.; Sapa, M.; Kołaczkowski, M.; Bucki, A.; Mendyk, A. Application of automated machine learning in the identification of multi-target-directed ligands blocking PDE4B, PDE8A, and TRPA1 with potential use in the treatment of asthma and COPD. Mol. Inform. 2023, 42, 2200214. DOI: https://doi.org/10.1002/minf.202200214

Ruf, P.; Madan, M.; Reich, C.; Ould-Abdeslam, D. Demystifying MLOps and Presenting a Recipe for the Selection of Open-Source Tools. Appl. Sci. 2021, 11, 8861. DOI: https://doi.org/10.3390/app11198861

Qi, W.; Xu, C.; Xu, X. AutoGluon: A revolutionary framework for landslide hazard analysis. Nat. Hazards Res. 2021, 1, 103–108. DOI: https://doi.org/10.1016/j.nhres.2021.07.002

Sreyes, K.; Davis, D.; Jayapandian, N. Internet of Things and Cloud Computing Involvement Microsoft Azure Platform. In Proceedings of the 2022 International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India, 13–15 October 2022; pp. 603–609 DOI: https://doi.org/10.1109/ICECAA55415.2022.9936126

. In Proceedings of the 2017 IEEE 24th International Conference on High-Performance Computing (HiPC), Jaipur, India, 18–21 December 2017; p. 182.

Meisenbacher, S.; Turowski, M.; Phipps, K.; Rätz, M.; Müller, D.; Hagenmeyer, V.; Mikut, R. Review of automated time series forecasting pipelines. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1475. DOI: https://doi.org/10.1002/widm.1475

Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv 2020, arXiv:2003.06505

Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and Robust Automated Machine Learning. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 113–134 DOI: https://doi.org/10.1007/978-3-030-05318-5_6

Pol, U.R.; Sawant, T.U. Automl: Building a classification model with PyCaret. YMER 2021, 20, 547–552

Sarangpure, N.; Dhamde, V.; Roge, A.; Doye, J.; Patle, S.; Tamboli, S. Automating the Machine Learning Process using PyCaret and Streamlit. In Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 3–5 March 2023; pp. 1–5 DOI: https://doi.org/10.1109/INOCON57975.2023.10101357

Lenkala, S.; Marry, R.; Gopovaram, S.R.; Akinci, T.C.; Topsakal, O. Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG). Computers 2023, 12, 197 DOI: https://doi.org/10.3390/computers12100197

Published

2025-01-08

How to Cite

Ehsan, A. (2025). Leveraging AI for Accurate Time Series Forecasting. International Journal for Global Academic & Scientific Research, 3(4), 51–61. https://doi.org/10.55938/ijgasr.v3i4.154