Dynamic Data Scaling Techniques for Streaming Machine Learning
DOI:
https://doi.org/10.55938/ijgasr.v3i1.68Keywords:
Adaptive Scaling Methods, Changing Data Patterns, Scaling Parameters, Dynamic Data Scaling, Predictive AccuracyAbstract
This research delves into innovative dynamic data scaling techniques designed for streaming machine learning environments. In the realm of real-time data streams, conventional static scaling methods may encounter challenges in adapting to evolving data distributions. To overcome this hurdle, our study explores dynamic scaling approaches capable of adjusting and optimizing scaling parameters dynamically as the characteristics of incoming data shift over time. The objective is to augment the performance and adaptability of machine learning models in streaming scenarios by ensuring that the scaling process remains responsive to changing patterns in the data. Through empirical evaluations and comparative analyses, the study aims to showcase the efficacy of the proposed dynamic data scaling techniques in enhancing predictive accuracy and sustaining model relevance in dynamic and fast-paced streaming environments. This research contributes to the advancement of scalable and adaptive machine learning methodologies, particularly in applications where timely and accurate insights from streaming data are crucial.
Downloads
References
Hardi M., Mohammed S.U.U., Rashid T.A. A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019, 2019, 25. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.1155/2019/8718571
Storn R., Price K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1023/A:1008202821328
Caraffini F., Kononova A.V. Structural bias in differential evolution: A preliminary study. AIP Conf. Proc. 2019, 2070, 020005. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.1063/1.5089972
Caraffini F., Kononova A.V., Corne D. Infeasibility and structural bias in Differential Evolution. Inf. Sci. 2019, 496, 161–179. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.1016/j.ins.2019.05.019
Mirjalili S., Lewis A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008
Yang X.S. A New Metaheuristic Bat-Inspired Algorithm. Nat. Inspired Coop. Strateg. Optim. 2010, 284, 65–74. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.1007/978-3-642-12538-6_6
Chen G., Luo W., Zhu T. Evolutionary clustering with differential evolution. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1382–1389. [Google Scholar] DOI: https://doi.org/10.1109/CEC.2014.6900488
Carnein M., Trautmann H. evoStream—Evolutionary Stream Clustering Utilizing Idle Times. Big Data Res. 2018, 14, 101–111. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1016/j.bdr.2018.05.005
Nasiri J., Khiyabani F. A Whale Optimization Algorithm (WOA) approach for Clustering. Cogent Math. Stat. 2018, 5. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1080/25742558.2018.1483565
Nandy S., Sarkar P. Chapter 8–Bat algorithm–based automatic clustering method and its application in image processing. In Bio-Inspired Computation and Applications in Image Processing; Academic Press: Cambridge, MA, USA, 2016; pp. 157–185. [Google Scholar] DOI: https://doi.org/10.1016/B978-0-12-804536-7.00008-9
Kokate U., Deshpande A., Mahalle P., Patil P. Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion. Big Data Cogn. Comput. 2018, 2, 32. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.3390/bdcc2040032
Cao F., Ester M., Qian W., Zhou A. Density based Clustering over an Evolving Data Stream with Noise. In Proceedings of the 2006 SIAM Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; Volume 2006, pp. 328–339. [Google Scholar]
Sun J., Fujita H., Chen P., Li H. Dynamic financial distress prediction with concept drift based ontime weighting combined with Adaboost support vector machine ensemble. Knowl. Based Syst. 2017, 120, 4–14. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1016/j.knosys.2016.12.019
Brzezinski D., Stefanowski J. Prequential AUC: Properties of the area under the ROC curve for data streams with concept drift. Knowl. Inf. Syst. 2017, 52, 531–562. [Google Scholar] [CrossRef] [Green Version] DOI: https://doi.org/10.1007/s10115-017-1022-8
ZareMoodi P., Kamali Siahroudi S., Beigy H. Concept-evolution detection in non-stationary data streams: A fuzzy clustering approach. Knowl. Inf. Syst. 2019, 60, 1329–1352. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1007/s10115-018-1266-y
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dr.Priyanka Kaushik
This work is licensed under a Creative Commons Attribution 4.0 International License.