The Impact of AI on Recruitment and Selection Processes: Analysing the role of AI in automating and enhancing recruitment and selection procedures
DOI:
https://doi.org/10.55938/ijgasr.v2i2.50Keywords:
HR Practices, AI Tools, Bibliometric Research, Recruitment, SelectionAbstract
Human resource management is the process of identifying, recruiting, hiring, and training talented individuals, as well as providing them with career advancement possibilities and critical feedback on their performance. The purpose of this study was to investigate the function of AI in HRM practises using qualitative bibliometric analysis. Scopus, emerald, and the Jstore library are used as data sources. This analysis contains adjustments to data spanning 18 years.
It also showed that there is a constant improvement and introduction of new technological conveniences. In accordance with the present market climate, which promotes and celebrates process management and people management practises targeted at making the organisation economically viable and different from the competition, this is a positive development. This work advances the theoretical understanding of AI's growth in the HR sector in light of this reality. Articles and proceedings examined in this research reveal that different authors and academic institutions provide different perspectives on the problem.
Downloads
References
Aden, J., and T. R. Eikebrokk. (2013). Implementing IT service management: A systematic literature review. International Journal of Information Management 33 (3):512–23. doi:10.1016/j.ijinfomgt.2013.01.004. applied artificial intelligence e2145631-3651 DOI: https://doi.org/10.1016/j.ijinfomgt.2013.01.004
Barreto, M. Leilianne., Silva, P. Maíra, Fischer, L. André, Albuquerque, G. Lindolfo, and Amorim, A.C. Wilson. (2011) “Emerging issues in people management: an analysis of academic output.” Administration Magazine UFSM, 4, (1): 215-232. DOI: https://doi.org/10.5902/198346592401
Boxall, Peter, and Purcell, John. (2011) “Strategy and Human Resource Management.” Macmillan International Higher Education.
Cappelli, P., P. Tambe, and V. Yakubovich. (2019). Artificial Intelligence in human resources management: Challenges and a path forward. California Management Review 61 (4):15–42.doi:10.1177/0008125619867910. DOI: https://doi.org/10.1177/0008125619867910
Caputo, F., V. Cillo, E. Candelo, and Y. Liu. (2019). Innovating through digital revolution. Management Decision 57 (8):2032–51. doi:10.1108/MD-07-2018-0833.Coron, C. 2022. Quantifying Human Resource Management: A literature review. Personnel Review 51 (4):1386–409. doi:10.1108/PR-05-2020-0322. DOI: https://doi.org/10.1108/PR-05-2020-0322
Crossan, M. M., and M. Apaydin. (2010). A multi-dimensional framework of organizational innovation: A systematic review of the literature. Journal of Management Studies47 (6):1154–91. doi:10.1111/j.1467-6486.2009.00880.x. DOI: https://doi.org/10.1111/j.1467-6486.2009.00880.x
Di Vaio, A., R. Palladino, R. Hassan, and O. Escobar. (2020). Artificial Intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research 121 (December):283–314. DOI: https://doi.org/10.1016/j.jbusres.2020.08.019
Fritts, M., and F. Cabrera. (2021). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology 23 (4):791–801. doi:10.1007/s10676-021-09615-w. DOI: https://doi.org/10.1007/s10676-021-09615-w
Garg, S., S. Sinha, A. Kumar, and M. Mani. (2022). A review of machine learning applications in Human Resource Management. International Journal of Productivity and Performance Management 71 (5):1590–610. doi:10.1108/IJPPM-08-2020-0427. DOI: https://doi.org/10.1108/IJPPM-08-2020-0427
Giermindl, L. M., F. Strich, O. Christ, U. Leicht-Deobald, and A. Redzepi. (2022). The dark side sof people analytics: Reviewing the perils for organisations and employees. European Journal of Information Systems 31 (3):410–35. doi:10.1080/0960085X.2021.1927213. DOI: https://doi.org/10.1080/0960085X.2021.1927213
Guleria, D., and G. Kaur. (2021). Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech 39 (4):1001–24. doi:10.1108/LHT-09-2020-0218.Gupta, P., S. Fernandes, and M. Jain. 2018. Automation in recruitment: A new frontier. Journal of Information Technology Teaching Cases 8 (2):118–25. doi:10.1057/s41266-018-0042-x. DOI: https://doi.org/10.1108/LHT-09-2020-0218
Hamilton, R. H., and H. K. Davison. (2022). Legal and ethical challenges for HR in machine learning. Employee Responsibilities and Rights Journal 34 (1):19–39. doi:10. Gutiérrez 1007/s10672-021-09377-z. DOI: https://doi.org/10.1007/s10672-021-09377-z
Harris, C.G. (2018). Making Better Job Hiring Decisions using "Human in the Loop" Techniques. USA: University of Northern Colorado, Greeley, CO.
Huang, L. C., Wu, P., Kuo, R. J., & Huang, H. C. (2001). A neural network modelling on human resource talent selection. International Journal of Human Resources Development and Management, 1(2-4), 206-219. DOI: https://doi.org/10.1504/IJHRDM.2001.001006
Huang, M. J., Y. L. Tsou, and S. C. Lee. (2006). Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowledge-Based Systems19 (6):396–403. doi:10.1016/j.knosys.2006.04.003 DOI: https://doi.org/10.1016/j.knosys.2006.04.003
Johnson, R. D., D. L. Stone, and K. M. Lukaszewski. (2021). The benefits of e-HRM and AI for talent acquisition. Journal of Tourism Futures 7 (1):40–52. doi:10.1108/JTF-02-2020-0013. DOI: https://doi.org/10.1108/JTF-02-2020-0013
Kearney, C., and T. Meynhardt. (2016). Directing corporate entrepreneurship strategy in the public sector to public value: Antecedents, components, and outcomes. International Public Management Journal 19 (4):543–72. doi:10.1080/10967494.2016.1160013.Kimseng, DOI: https://doi.org/10.1080/10967494.2016.1160013
Kshetri, N. (2021). Evolving Uses of Artificial Intelligence in Human Resource Management in emerging economies in the global south: Some preliminary evidence. Management Research Review 44(7): 970–90. doi:10.1108/MRR-03-2020-0168. DOI: https://doi.org/10.1108/MRR-03-2020-0168
Loeb-becke, Claudia, and Picot, Arnold. (2015) “Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda.” The Journal of Strategic Information Systems, 24 (3): 149-157. doi: 10.1016/j.jsis.2015.08.002. DOI: https://doi.org/10.1016/j.jsis.2015.08.002
Macke, J., and D. Genari. (2019). Systematic literature review on sustainable Human Resource Management. Journal of Cleaner Production 208:806–15. doi:10.1016/j.jclepro.2018.10.091. DOI: https://doi.org/10.1016/j.jclepro.2018.10.091
Malik, A., P. The visuthan, and T. De Sliva. (2022) Artificial Intelligence, Employee Engagement, Experience, and HRM BT - Strategic Human Resource Management and Employment Relations: An International Perspective A. Maliked. 171–84 Springer International Publishing. doi:10.1007/978-3-030-90955-0_16. DOI: https://doi.org/10.1007/978-3-030-90955-0_16
Malik, N., S. N. Tripathi, A. K. Kar, and S. Gupta. (2021). Impact of Artificial Intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower.doi:10.1108/IJM-03-2021-0173. DOI: https://doi.org/10.1108/IJM-03-2021-0173
Marx, W., L. Bornmann, A. Barth, and L. Leydesdorff. (2014). Detecting the historical roots of research fields by Reference Publication Year Spectroscopy (RPYS). Journal of the Association for Information Science and Technology 65 (4):751–64. doi:10.1002/asi.23089. DOI: https://doi.org/10.1002/asi.23089
Mesquita, L. Daniel. (2018) “The "Artificial" Consumer: Approaches between Artificial Intelligence and Marketing.” In: ANPAD Meetings – Enan pad,. Curitiba/PR – 3-6.
Michailidis, M. P. (2018). The challenges of AI and blockchain on HR recruiting practices. Cyprus Review 30 (2):169–80.
Minbaeva, D. (2021). Disrupted HR? Human Resource Management Review 31 (4):100820.doi:10.1016/j.hrmr.2020.100820.Minsky, M. 1968. Semantic Information Processing. Massachusetts: The MIT Press. DOI: https://doi.org/10.1016/j.hrmr.2020.100820
Mitchell, T., and E. Brynjolfsson. 2017. Track how technology is transforming work. Nature544 (7650):290–92. doi:10.1038/544290a. DOI: https://doi.org/10.1038/544290a
Nankervis, A., J. Connell, R. Cameron, A. Montague, and V. Prikshat. 2021. ‘Are we there yet?’ Australian HR professionals and the fourth industrial revolution. Asia Pacific Journal of Human Resources 59 (1):3–19. doi:10.1111/1744-7941.12245. DOI: https://doi.org/10.1111/1744-7941.12245
Nascimento, M. Alexandre, and Queiroz. M.C Anna. (2017) “Overview of research on Artificial Intelligence in Administration in Brazil.” In: ANPAD Meetings – Enanpad, 2017. São Paulo/SP – 1-4.
Nawaz, N. 2020. Artificial Intelligence applications for face recognition in recruitment process. Journal of Management Information and Decision Sciences 23:499–509.
Nedelkoska, L., and G. Quintini. (2018). Automation, Skills Use and Training. Paris: OECDdoi:10.1787/1815199X. DOI: https://doi.org/10.1787/1815199X
Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann. https://doi.org/10.1016/C2009-0-27773-7 DOI: https://doi.org/10.1016/C2009-0-27773-7
Ogbeibu, S., C. J. Chiappetta Jabbour, J. Burgess, J. Gaskin, and D. W. S. Renwick. (2022). Green talent management and turnover intention: The roles of leader STARA competence and digital task interdependence. Journal of Intellectual Capital 23 (1):27–55. DOI: https://doi.org/10.1108/JIC-01-2021-0016
P., P. Cappelli, and V. Yakubovich. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review 61 (4):15–42.doi:10.1177/0008125619867910. DOI: https://doi.org/10.1177/0008125619867910
Paesano, A. (2021). Artificial Intelligence and creative activities inside organizational behavior. International Journal of Organizational Analysis. ahead-of-p(ahead-of-print. doi: 10.1108/IJOA-09-2020-2421. DOI: https://doi.org/10.1108/IJOA-09-2020-2421
Pan, Y., F. Froese, N. Liu, Y. Hu, and M. Ye. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management 33 (6):1125–47. doi:10.1080/09585192.2021.1879206. DOI: https://doi.org/10.1080/09585192.2021.1879206
Parris, D. L., and J. W. Peachey. (2013). A systematic literature review of servant leadership theory in organizational contexts. Journal of Business Ethics 113 (3):377–93. doi:10.1007/s10551-012-1322-6. DOI: https://doi.org/10.1007/s10551-012-1322-6
Paul, J., A. Merchant, Y. K. Dwivedi, and G. Rose. 2021. Writing an impactful review article: What do we know and what do we need to know? Journal of Business Research 133:337–40.doi:10.1016/j.jbusres.2021.05.005. DOI: https://doi.org/10.1016/j.jbusres.2021.05.005
Pereira, V., E. Hadjielias, M. Christofi, and D. Vrontis. (2021), September. A systematic literature review on the impact of Artificial Intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review 100857. doi:10.1016/j.hrmr.2021.100857. DOI: https://doi.org/10.1016/j.hrmr.2021.100857
Perello, M. R., and M. Tuffaha. (2021). Artificial Intelligence definition, applications and adoption in Human Resource Management: A systematic literature review. International Journal of Business Innovation and Research 1:1. doi:10.1504/IJBIR.2021.10040005. DOI: https://doi.org/10.1504/IJBIR.2021.10040005
Pickering, C., and J. Byrne. (2014). The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research &Development 33 (3):534–48. doi:10.1080/07294360.2013.841651. DOI: https://doi.org/10.1080/07294360.2013.841651
Pietronudo, M., G. Croidieu, and F. Schiavone. (2022). A solution looking for problems? A systematic literature review of the rationalizing influence of Artificial Intelligence on decision-making in innovation management. Technological Forecasting and Social Change182 (September):121828. doi:10.1016/j.techfore.2022.121828. DOI: https://doi.org/10.1016/j.techfore.2022.121828
Pillai, R., and B. Sivathanu. (2020). Adoption of Artificial Intelligence (AI) for talent acquisition in IT/Its organizations. Benchmarking: An International Journal 27 (9):2599–629. doi:10.1108/BIJ-04-2020-0186. DOI: https://doi.org/10.1108/BIJ-04-2020-0186
Poba-Nzaou, P., M. Galani, and A. Tchibozo. (2020). Transforming Human Resources Management in the age of Industry 4.0: A matter of survival for HR professionals. Strategic HR Review 19 (6):273–78. doi:10.1108/SHR-06-2020-0055. DOI: https://doi.org/10.1108/SHR-06-2020-0055
Podsakoff, P. M., S. B. MacKenzie, D. G. Bachrach, and N. P. Podsakoff. (2005). The influence of management journals in the 1980s and 1990s. Strategic Management Journal 26 (5):473–88.doi:10.1002/smj.454. DOI: https://doi.org/10.1002/smj.454
Qamar, Y., R. K. Agrawal, T. A. Samad, and C. J. Chiappetta Jabbour. (2021). When technology meets people: The interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management 34 (5):1339–70. doi:10.1108/JEIM-11-2020-0436. DOI: https://doi.org/10.1108/JEIM-11-2020-0436
Rąb-Kettler, K., and B. Lehnervp. (2019). Recruitment in the Times of Machine Learning. Management Systems in Production Engineering 27 (2):105–09. doi:10.1515/mspe-2019-0018. DOI: https://doi.org/10.1515/mspe-2019-0018
Rykun, E. (2019) Artificial Intelligence in HR Management–What Can We Expect? The Boss Magazine. https://thebossmagazine.com/ai-hr-management/
Salmerón, J. L., and P. R. Palos-Sánchez.(2019). Uncertainty Propagation in Fuzzy Grey Cognitive Maps with Hebbian-Like Learning Algorithms. IEEE Transactions on Cybernetics 49 (1):211–20. doi:10.1109/TCYB.2017.2771387. DOI: https://doi.org/10.1109/TCYB.2017.2771387
Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research 104:333–39. doi:10.1016/j.jbusres.2019.07.039. DOI: https://doi.org/10.1016/j.jbusres.2019.07.039
Soleimani, M., A. Intezari, and D. J. Pauleen. (2022). Mitigating cognitive biases in developing ai-assisted recruitment systems: A knowledge-sharing approach. International Journal of Knowledge Management 18 (1):1–18. doi:10.4018/IJKM.290022. DOI: https://doi.org/10.4018/IJKM.290022
Stanley, D. S., and V. Aggarwal. (2019). Impact of disruptive technology on human resource management practices. International Journal of Business Continuity and Risk Management9 (4):350. doi:10.1504/ijbcrm.2019.10021173. DOI: https://doi.org/10.1504/IJBCRM.2019.102608
Stroh meier, S., and F. Piazza. (2013). Domain Driven Data Mining in Human Resource Management: A Review of Current Research. Expert Systems with Applications40 (7):2410–20. doi:10.1016/j.eswa.2012.10.059. DOI: https://doi.org/10.1016/j.eswa.2012.10.059
Suen, H. Y., M. Yi-Ching, and L. Shih-Hao. (2019). Does the Use of Synchrony and Artificial Intelligence in Video Interviews Affect Interview Ratings and Applicant Attitudes? Computers in Human Behavior 98:93–101. doi:10.1016/j.chb.2019.04.012.Tambe, DOI: https://doi.org/10.1016/j.chb.2019.04.012
T., A. Javed, C. Jeenanunta, and Y. Kohda. (2020). Applications of fuzzy logic toreconfigure human resource management practices for promoting product innovation informal and non-formal R&D firms. Journal of Open Innovation: Technology, Market, andComplexity 6 (2). doi: 10.3390/JOITMC6020038. DOI: https://doi.org/10.3390/joitmc6020038
Turing, A. M. (1937). On Computable Numbers, with an Application to the Anschauung’s problem. Proceedings of the London Mathematical Society s2-42 (1):230–65.doi:10.1112/plms/s2-42.1.230. DOI: https://doi.org/10.1112/plms/s2-42.1.230
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind LIX (236):433–60. doi:10.1093/mind/LIX.236.433.van Esch, P., and J. S. Black. 2019. Factors that influence new generation candidates to engage with and complete digital, AI-enabled recruiting. Business Horizons 62 (6):729–39. doi:10.1016/j.bushor.2019.07.004. DOI: https://doi.org/10.1016/j.bushor.2019.07.004
Upadhyay, A. K., & Khandelwal, K. (2018). Applying artificial intelligence: implications for recruitment. Strategic HR Review, 17(5), 255- 258. doi: 10.1108/SHR-07-2018-0051 DOI: https://doi.org/10.1108/SHR-07-2018-0051
Varma, A., C. Dawkins, and K. Chaudhuri. (2022). Artificial intelligence and people manage-ment: A critical assessment through the ethical lens. Human Resource Management Review, April, human Resource Management Review, April 100923. doi:10.1016/j.hrmr.2022.100923. DOI: https://doi.org/10.1016/j.hrmr.2022.100923
Votto, A., R. Valecha, P. Najafirad, and R. Rao. (2021). Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review. International Journal of Information Management Data Insights 1 (2):100047. doi:10.1016/j.jjimei.2021.100047. DOI: https://doi.org/10.1016/j.jjimei.2021.100047
Vrontis, D., M. Christofi, V. Pereira, S. Tarba, A. Makrides, and E. Trichina. (2022). Artificialintelligence, robotics, advanced technologies and human resource management:A systematic review. International Journal of Human Resource Management33 (6):1237–66. doi:10.1080/09585192.2020.1871398. DOI: https://doi.org/10.1080/09585192.2020.1871398
Wang, X., & Jiang, Y. (2010). The Study of Enterprise Human Resource Evaluation Research Based on Neural Network. In 2010 Third International Symposium on Information Processing (19-21). IEEE. DOI: https://doi.org/10.1109/ISIP.2010.13
Welsh, R. (2019). Defining artificial intelligence. SMPTE Motion Imaging Journal 128 (1):26–32.doi:10.5594/JMI.2018.2880366. DOI: https://doi.org/10.5594/JMI.2018.2880366
Wong, G., T. Greenhalgh, G. Westhorp, J. Buckingham, and R. Pawson. (2013). Publication Standards: Meta-Narrative Reviews. Journal of Advanced Nursing 69 (5):987–1004. doi:10.1111/jan.12092. DOI: https://doi.org/10.1111/jan.12092
Xie, L., & Yanjun, T. (2015). The Research on the University Human Resources Risk Management Based on RBF Neural Network. International Journal of Simulation--Systems, Science & Technology, 16.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Saurabh Pratap Singh Rathore
This work is licensed under a Creative Commons Attribution 4.0 International License.